58 research outputs found

    Effects of cross-modal asynchrony on informational masking in human cortex

    Get PDF
    In many everyday listening situations, an otherwise audible sound may go unnoticed amid multiple other sounds. This auditory phenomenon, called informational masking (IM), is sensitive to visual input and involves early (50-250 msec) activity in the auditory cortex (the so-called awareness-related negativity). It is still unclear whether and how the timing of visual input influences the neural correlates of IM in auditory cortex. To address this question, we obtained simultaneous behavioral and neural measures of IM from human listeners in the presence of a visual input stream and varied the asynchrony between the visual stream and the rhythmic auditory target stream (in-phase, antiphase, or random). Results show effects of cross-modal asynchrony on both target detectability (RT and sensitivity) and the awareness-related negativity measured with EEG, which were driven primarily by antiphasic audiovisual stimuli. The neural effect was limited to the interval shortly before listeners' behavioral report of the target. Our results indicate that the relative timing of visual input can influence the IM of a target sound in the human auditory cortex. They further show that this audiovisual influence occurs early during the perceptual buildup of the target sound. In summary, these findings provide novel insights into the interaction of IM and multisensory interaction in the human brain.</p

    Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study.

    Get PDF
    In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release) has not been well-characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity (HGA) between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus) as well as a broad P3b-like potential (between ~300 and 600 ms) with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas

    Neural Correlates of Auditory Perceptual Awareness under Informational Masking

    Get PDF
    Our ability to detect target sounds in complex acoustic backgrounds is often limited not by the ear's resolution, but by the brain's information-processing capacity. The neural mechanisms and loci of this “informational masking” are unknown. We combined magnetoencephalography with simultaneous behavioral measures in humans to investigate neural correlates of informational masking and auditory perceptual awareness in the auditory cortex. Cortical responses were sorted according to whether or not target sounds were detected by the listener in a complex, randomly varying multi-tone background known to produce informational masking. Detected target sounds elicited a prominent, long-latency response (50–250 ms), whereas undetected targets did not. In contrast, both detected and undetected targets produced equally robust auditory middle-latency, steady-state responses, presumably from the primary auditory cortex. These findings indicate that neural correlates of auditory awareness in informational masking emerge between early and late stages of processing within the auditory cortex

    Management of Cerebral Venous Thrombosis Due to Adenoviral COVID-19 Vaccination

    Get PDF
    Objective Cerebral venous thrombosis (CVT) caused by vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare adverse effect of adenovirus-based severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccines. In March 2021, after autoimmune pathogenesis of VITT was discovered, treatment recommendations were developed. These comprised immunomodulation, non-heparin anticoagulants, and avoidance of platelet transfusion. The aim of this study was to evaluate adherence to these recommendations and its association with mortality. Methods We used data from an international prospective registry of patients with CVT after the adenovirus-based SARS-CoV-2 vaccination. We analyzed possible, probable, or definite VITT-CVT cases included until January 18, 2022. Immunomodulation entailed administration of intravenous immunoglobulins and/or plasmapheresis. Results Ninety-nine patients with VITT-CVT from 71 hospitals in 17 countries were analyzed. Five of 38 (13%), 11 of 24 (46%), and 28 of 37 (76%) of the patients diagnosed in March, April, and from May onward, respectively, were treated in-line with VITT recommendations (p < 0.001). Overall, treatment according to recommendations had no statistically significant influence on mortality (14/44 [32%] vs 29/55 [52%], adjusted odds ratio [OR] = 0.43, 95% confidence interval [CI] = 0.16-1.19). However, patients who received immunomodulation had lower mortality (19/65 [29%] vs 24/34 [70%], adjusted OR = 0.19, 95% CI = 0.06-0.58). Treatment with non-heparin anticoagulants instead of heparins was not associated with lower mortality (17/51 [33%] vs 13/35 [37%], adjusted OR = 0.70, 95% CI = 0.24-2.04). Mortality was also not significantly influenced by platelet transfusion (17/27 [63%] vs 26/72 [36%], adjusted OR = 2.19, 95% CI = 0.74-6.54). Conclusions In patients with VITT-CVT, adherence to VITT treatment recommendations improved over time. Immunomodulation seems crucial for reducing mortality of VITT-CVT. ANN NEUROL 2022Peer reviewe

    Cerebral venous sinus thrombosis due to vaccine-induced immune thrombotic thrombocytopenia in middle-income countries

    Get PDF
    Background: Adenovirus-based COVID-19 vaccines are extensively used in low- and middle-income countries (LMICs). Remarkably, cases of cerebral venous sinus thrombosis due to vaccine-induced immune thrombotic thrombocytopenia (CVST-VITT) have rarely been reported from LMICs. Aims: We studied the frequency, manifestations, treatment, and outcomes of CVST-VITT in LMICs. Methods: We report data from an international registry on CVST after COVID-19 vaccination. VITT was classified according to the Pavord criteria. We compared CVST-VITT cases from LMICs to cases from high-income countries (HICs). Results: Until August 2022, 228 CVST cases were reported, of which 63 were from LMICs (all middle-income countries [MICs]: Brazil, China, India, Iran, Mexico, Pakistan, Turkey). Of these 63, 32 (51%) met the VITT criteria, compared to 103 of 165 (62%) from HICs. Only 5 of the 32 (16%) CVST-VITT cases from MICs had definite VITT, mostly because anti-platelet factor 4 antibodies were often not tested. The median age was 26 (interquartile range [IQR] 20–37) versus 47 (IQR 32–58) years, and the proportion of women was 25 of 32 (78%) versus 77 of 103 (75%) in MICs versus HICs, respectively. Patients from MICs were diagnosed later than patients from HICs (1/32 [3%] vs. 65/103 [63%] diagnosed before May 2021). Clinical manifestations, including intracranial hemorrhage, were largely similar as was intravenous immunoglobulin use. In-hospital mortality was lower in MICs (7/31 [23%, 95% confidence interval (CI) 11–40]) than in HICs (44/102 [43%, 95% CI 34–53], p = 0.039). Conclusions: The number of CVST-VITT cases reported from LMICs was small despite the widespread use of adenoviral vaccines. Clinical manifestations and treatment of CVST-VITT cases were largely similar in MICs and HICs, while mortality was lower in patients from MICs.</p

    Sex differences in cerebral venous sinus thrombosis after adenoviral vaccination against COVID-19

    Get PDF
    Introduction: Cerebral venous sinus thrombosis associated with vaccine-induced immune thrombotic thrombocytopenia (CVST-VITT) is a severe disease with high mortality. There are few data on sex differences in CVST-VITT. The aim of our study was to investigate the differences in presentation, treatment, clinical course, complications, and outcome of CVST-VITT between women and men. Patients and methods: We used data from an ongoing international registry on CVST-VITT. VITT was diagnosed according to the Pavord criteria. We compared the characteristics of CVST-VITT in women and men. Results: Of 133 patients with possible, probable, or definite CVST-VITT, 102 (77%) were women. Women were slightly younger [median age 42 (IQR 28–54) vs 45 (28–56)], presented more often with coma (26% vs 10%) and had a lower platelet count at presentation [median (IQR) 50x109/L (28–79) vs 68 (30–125)] than men. The nadir platelet count was lower in women [median (IQR) 34 (19–62) vs 53 (20–92)]. More women received endovascular treatment than men (15% vs 6%). Rates of treatment with intravenous immunoglobulins were similar (63% vs 66%), as were new venous thromboembolic events (14% vs 14%) and major bleeding complications (30% vs 20%). Rates of good functional outcome (modified Rankin Scale 0-2, 42% vs 45%) and in-hospital death (39% vs 41%) did not differ. Discussion and conclusions: Three quarters of CVST-VITT patients in this study were women. Women were more severely affected at presentation, but clinical course and outcome did not differ between women and men. VITT-specific treatments were overall similar, but more women received endovascular treatment.</p

    Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer

    Get PDF

    Transient human auditory cortex activation during volitional attention shifting.

    No full text
    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues
    corecore